Buku Non-ketenaganukliran
Interpretable machine learning with Python : learn to build interpretable high-performance models with hands-on real-world examples
Table of ContentsInterpretation, Interpretability and Explainability; and why does it all matter?Key Concepts of InterpretabilityInterpretation ChallengesFundamentals of Feature Importance and ImpactGlobal Model-Agnostic Interpretation MethodsLocal Model-Agnostic Interpretation MethodsAnchor and Counterfactual ExplanationsVisualizing Convolutional Neural NetworksInterpretation Methods for Multivariate Forecasting and Sensitivity AnalysisFeature Selection and Engineering for InterpretabilityBias Mitigation and Causal Inference MethodsMonotonic Constraints and Model Tuning
S23-0347 | 004.8 MAS i | Perpustakaan Poltek Nuklir | Tersedia |
Tidak tersedia versi lain